On embedding torsion free modules into free modules
نویسندگان
چکیده
منابع مشابه
On Torsion Free Distributive Modules
Let R be a commutative ring with identity and let M be a torsion free R-module. Several characterizations of distributive modules are investigated. Indeed, among other equivalent conditions, we prove that M is distributive if and only if any primal submodule of M is irreducible, and, if and only if each submodule of M can be represented as an intersection of irreducible isolated components. MSC...
متن کاملTorsion-free Endotrivial Modules
Let G be a finite group and let T (G) be the abelian group of equivalence classes of endotrivial kG-modules, where k is an algebraically closed field of characteristic p. We investigate the torsion-free part TF (G) of the group T (G) and look for generators of TF (G). We describe three methods for obtaining generators. Each of them only gives partial answers to the question but we obtain more p...
متن کاملFree modules, finitely-generated modules
The following definition is an example of defining things by mapping properties, that is, by the way the object relates to other objects, rather than by internal structure. The first proposition, which says that there is at most one such thing, is typical, as is its proof. Let R be a commutative ring with 1. Let S be a set. A free R-moduleM on generators S is an R-module M and a set map i : S →...
متن کاملOn quasi-free Hilbert modules
In this note we settle some technical questions concerning finite rank quasi-free Hilbert modules and develop some useful machinery. In particular, we provide a method for determining when two such modules are unitarily equivalent. Along the way we obtain representations for module maps and study how to determine the underlying holomorphic structure on such modules.
متن کاملAsymptotic Prime Divisors of Torsion-free Symmetric Powers of Modules
Let R be a Noetherian ring, F := Rr and M ⊆ F a submodule of rank r. Let A∗(M) denote the stable value of Ass(Fn/Mn), for n large, where Fn is the nth symmetric power of Fn and Mn is the image of the nth symmetric power of M in Fn. We provide a number of characterizations for a prime ideal to belong to A∗(M). We also show that A∗(M) ⊆ A∗(M), where A∗(M) denotes the stable value of Ass(Fn/Mn).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1977
ISSN: 0386-2194
DOI: 10.3792/pja/1195517923